CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence

نویسندگان

  • Olga V Leontieva
  • Mikhail V Blagosklonny
چکیده

CDKN1A (p21) and CDKN2A (p16) inhibit CDK4/6, initiating senescence. According to our view on senescence, the role of p21 and p16 is to cause cell cycle arrest, whereas MTOR (mechanistic target of rapamycin) drives geroconversion to senescence. Recently we demonstrated that one of the markers of p21- and p16-initiated senescence is MEK-dependent hyper-elevation of cyclin D1. We noticed that a synthetic inhibitor of CDK 4/6 (PD0332991) also induced cyclin D1-positive senescence. We demonstrated that PD0332991 and p21 caused almost identical senescence phenotypes. p21, p16, and PD0332991 do not inhibit MTOR, and rapamycin decelerates geroconversion caused by all 3 molecules. Like p21, PD0332991 initiated senescence at any concentration that inhibited cell proliferation. This confirms the notion that a mere arrest in the presence of active MTOR may lead to senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p16 Mediates Cyclin Dependent Kinase 4 and 6 Inhibition in Senescent Prostatic Epithelial Cells

The senescence checkpoint constrains the proliferative potential of normal cells in culture to a finite number of cell doublings. In this study, we investigated the mechanism of cyclin dependent kinase (cdk) inhibition in senescent human prostatic epithelial cells (HPECs). Progression of HPECs from early passage to senescence was accompanied by a gradual loss of cells in S phase and an accumula...

متن کامل

Inhibition in Senescent Prostatic Epithelial Cells Mediates Cyclin Dependent Kinase

The senescence checkpoint constrains the proliferative potential of normal cells in culture to a finite number of cell doublings. In this study, we investigated the mechanism of cyclin dependent kinase (cdk) inhibition in senescent human prostatic epithelial cells (HPECs). Progression of HPECs from early passage to senescence was accompanied by a gradual loss of cells in S phase and an accumula...

متن کامل

Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts.

The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21(Sdi1,Cip1,Waf1), which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cell...

متن کامل

Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence

Cellular senescence, the stable cell cycle arrest elicited by various forms of stress, is an important facet of tumor suppression. Although much is known about the key players in the implementation of senescence, including the pRb and p53 axes and the cyclin dependent kinase inhibitors p16(INK4a) and p21(CIP1), many details remain unresolved. In studying conditional senescence in human fibrobla...

متن کامل

Myc down-regulation as a mechanism to activate the Rb pathway in STAT5A-induced senescence.

Senescence is a general antiproliferative program that avoids the expansion of cells bearing oncogenic mutations. We found that constitutively active STAT5A (ca-STAT5A) can induce a p53- and Rb-dependent cellular senescence response. However, ca-STAT5A did not induce p21 and p16(INK4a), which are responsible for inhibiting cyclin-dependent protein kinases and engaging the Rb pathway during the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013